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Abstract—A novel four-step synthetic route to enantiopure cyclopentene carboxylic acids starting from commercially available
3-endo-bromocamphor is described. The synthesis is straightforward and practical. The key transformations involve firstly, an
enantiospecific Wagner—Meerwein rearrangement of a bromocamphor derived cyanohydrin, and secondly the regiospecific
C-(1)-C-(2) bond scission of a 7-bromonorbornan-2-one. © 2001 Elsevier Science Ltd. All rights reserved.

There is a great deal of current interest in new synthetic
routes to enantiopure substituted cyclopentanoids,
which is due to the fact that many natural products
with interesting biological and medicinal activities
present a chiral five-membered carbocycle as their basic
moiety (e.g. prostaglandins, jasmonoids, steroids, gib-
berellins, cyclitols, etc.).! Among the variety of natu-
rally occurring substituted cyclopentanoids, homochiral
cyclopentane- and cyclopentene carboxylic acids (and
their acid derivatives such as esters, nitriles, alcohols,
etc.) have special significance in natural product chem-
istry (Fig. 1).! As such, the establishment of new
efficient synthetic routes to enantiopure cyclopentene
carboxylic acids of the type 1 is of great interest.!

Most of the described synthetic routes to enantiopure
cyclopentanoid derivatives are based on the regiospe-
cific fragmentation of a key enantiopure functionalized
norbornane intermediate.? Unfortunately, this key nor-
bornane is usually built up through an asymmetric
Diels—Alder reaction, which often requires the use of a
chiral auxiliary, and can reduce the efficiency of the
synthesis (depending on the e.e. obtained in the
cycloaddition step).® This problem can be solved if the
norbornane intermediate is obtained by functionaliza-
tion of the naturally occurring camphor skeleton,
which, advantageously, can be achieved with high
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diastereomeric excesses due to both rigidity and steric
factors inherent to the camphor framework.'s

Herein, we describe a novel route to the interesting
enantiopure cyclopentene carboxylic acids 7 and 8
starting from commercial 3-endo-bromocamphor 2
(Scheme 1). The first step involves the preparation of
the diasteromeric cyanohydrins 3 and 4 from (1R)-3-
endo-bromocamphor 2 by a standard procedure previ-
ously described by us.*® Separation of both
diastereomeric cyanohydrins 3 and 4 is required, since
only the exo-hydroxy cyanohydrin 4 is able to undergo
reaction with triflic anhydride® to give the 7-anti-
bromo-2-methylenenorbornane 5.>’ Methylenenorbor-
nane 5 is subsequently ozonolyzed to give the
corresponding 7-anti-bromonorbornan-2-one 6 in near
quantitative yield.®> Finally, a mild basic hydrolysis of 6
yields the cyclopentene cyano-acid 7 (sodium bicarbon-
ate hydrolysis) or di-acid 8 (sodium hydroxide hydroly-
sis) with high yields (91% for 7 and 93% for 8).%
Non-reactive cyanohydrin 3 can be quantitatively
hydrolyzed under mild basic conditions (10% NaOH,
room temperature) to starting bromocamphor 2, which
improves the overall yield of the described synthetic
procedure.

The key steps of the above described route are the
enantiospecific Wagner—Meerwein rearrangement of 4
by reaction with triflic anhydride;? and the regiospecific
C-(1)-C-(2) bond scission of 2-norbornanone 6 under
basic hydrolysis, which is promoted by the presence of

0957-4166/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0957-4166(01)00039-8



190 A. Garcia Martinez et al. / Tetrahedron: Asymmetry 12 (2001) 189-191

H CH2

/ Me
Zizanoic acid HO OH
Y
HO OMe
) A Salpantiol
Methyl jasmonate ~_

(|302H

Cc

(Cheln n=0or1

(Me),CH

Me™
OH O

Xanthocidin

Steroid intermediate

Figure 1. Some relevant natural products with chiral cyclopentanoid carboxylic acid moiety.
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Scheme 1. Novel 3-endo-bromocamphor based route to enantiopure cyclopentene carboxylic acids.

the bromine atom attached to the C-(7) position
(Scheme 2).'°

In conclusion, a new route to interesting enantiopure
cyclopentene carboxylic acid intermediates starting
from readily available 3-endo-bromocamphor has been
described. The straightforward preparation of the
described cyclopentenes establishes a synthetic model to
other versatile enantiopure cyclopentanoids.
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Scheme 2. Key synthetic steps of the described route.
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