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Abstract—A novel four-step synthetic route to enantiopure cyclopentene carboxylic acids starting from commercially available
3-endo-bromocamphor is described. The synthesis is straightforward and practical. The key transformations involve firstly, an
enantiospecific Wagner–Meerwein rearrangement of a bromocamphor derived cyanohydrin, and secondly the regiospecific
C-(1)�C-(2) bond scission of a 7-bromonorbornan-2-one. © 2001 Elsevier Science Ltd. All rights reserved.

There is a great deal of current interest in new synthetic
routes to enantiopure substituted cyclopentanoids,
which is due to the fact that many natural products
with interesting biological and medicinal activities
present a chiral five-membered carbocycle as their basic
moiety (e.g. prostaglandins, jasmonoids, steroids, gib-
berellins, cyclitols, etc.).1 Among the variety of natu-
rally occurring substituted cyclopentanoids, homochiral
cyclopentane- and cyclopentene carboxylic acids (and
their acid derivatives such as esters, nitriles, alcohols,
etc.) have special significance in natural product chem-
istry (Fig. 1).1 As such, the establishment of new
efficient synthetic routes to enantiopure cyclopentene
carboxylic acids of the type 1 is of great interest.1

Most of the described synthetic routes to enantiopure
cyclopentanoid derivatives are based on the regiospe-
cific fragmentation of a key enantiopure functionalized
norbornane intermediate.2 Unfortunately, this key nor-
bornane is usually built up through an asymmetric
Diels–Alder reaction, which often requires the use of a
chiral auxiliary, and can reduce the efficiency of the
synthesis (depending on the e.e. obtained in the
cycloaddition step).3 This problem can be solved if the
norbornane intermediate is obtained by functionaliza-
tion of the naturally occurring camphor skeleton,
which, advantageously, can be achieved with high

diastereomeric excesses due to both rigidity and steric
factors inherent to the camphor framework.1g

Herein, we describe a novel route to the interesting
enantiopure cyclopentene carboxylic acids 7 and 8
starting from commercial 3-endo-bromocamphor 2
(Scheme 1). The first step involves the preparation of
the diasteromeric cyanohydrins 3 and 4 from (1R)-3-
endo-bromocamphor 2 by a standard procedure previ-
ously described by us.4,5 Separation of both
diastereomeric cyanohydrins 3 and 4 is required, since
only the exo-hydroxy cyanohydrin 4 is able to undergo
reaction with triflic anhydride6 to give the 7-anti-
bromo-2-methylenenorbornane 5.5,7 Methylenenorbor-
nane 5 is subsequently ozonolyzed to give the
corresponding 7-anti-bromonorbornan-2-one 6 in near
quantitative yield.5 Finally, a mild basic hydrolysis of 6
yields the cyclopentene cyano-acid 7 (sodium bicarbon-
ate hydrolysis) or di-acid 8 (sodium hydroxide hydroly-
sis) with high yields (91% for 7 and 93% for 8).8

Non-reactive cyanohydrin 3 can be quantitatively
hydrolyzed under mild basic conditions (10% NaOH,
room temperature) to starting bromocamphor 2, which
improves the overall yield of the described synthetic
procedure.

The key steps of the above described route are the
enantiospecific Wagner–Meerwein rearrangement of 4
by reaction with triflic anhydride;9 and the regiospecific
C-(1)�C-(2) bond scission of 2-norbornanone 6 under
basic hydrolysis, which is promoted by the presence of* Corresponding authors. E-mail: santmoya@eucmax.sim.ucm.es
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Figure 1. Some relevant natural products with chiral cyclopentanoid carboxylic acid moiety.

Scheme 1. Novel 3-endo-bromocamphor based route to enantiopure cyclopentene carboxylic acids.

the bromine atom attached to the C-(7) position
(Scheme 2).10

In conclusion, a new route to interesting enantiopure
cyclopentene carboxylic acid intermediates starting
from readily available 3-endo-bromocamphor has been
described. The straightforward preparation of the
described cyclopentenes establishes a synthetic model to
other versatile enantiopure cyclopentanoids.
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Scheme 2. Key synthetic steps of the described route.
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7. Triflic anhydride treatment is realized as described in Ref.
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solution (or 10% NaOH solution) was stirred at room
temperature for 6 h. The mixture was acidified with
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